Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes

M. Albers^{1,2}, N.Warr², K. Nomura^{2,3}, D. Muecher⁴, A. Blazhev², J. Jolie², P. Reiter², T Otsuka³, R. Kruecken⁴, P. van Duppen⁵, N. Marginean⁶, D. Jenkins⁷, R. Wadsworth⁷, T. Kroell⁸, M. Scheck⁸, G. Georgiev⁹, G. Simpson¹⁰, J. Pakarinen¹¹, J. van de Walle¹², K. Wimmer^{4,13}, M. Zielinska¹⁴ and the Miniball IS485 Collaboration

¹Argonne National Laboratory, Argonne, IL 60439, USA
²Institut fuer Kernphysik, University of Cologne, D-50937 Cologne, GER
³Department of Physics, University of Tokyo, Tokyo 113-0033, JAP
⁴Physik Deparment E12, TU Munich, D-85748 Munich, GER
⁵Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, BEL
⁶HHNIPNE, Bucharest, ROM
⁷Department of Physics, University of York, York YO10 5DD, GB
⁸Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt, GER
⁹CSNSM, University of Paris, F-91405 Orsay, FR
¹⁰LPSC, University of Grenoble, F-38026 Grenoble, FR
¹¹Physik Department CERN, CH-1211 Geneva 23, CH
¹²KVI, University of Groningen, NL-9747 AA Groningen, NL
¹³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
¹³HIL, University of Warsaw, PL-02-093 Warsaw, PL

Nuclei in the neutron-rich A \approx 100 mass region are well suited for the understanding of evolution of nuclear deformation from spherical to strongly deformed ground-state shapes. By adding only a few neutrons to the N=50 shell closure, deformation and, thus, collective effects occur quickly. For the Z=40 (Zr) isotopes, the neutron number N=56 becomes an effective shell closure, so that ⁹⁶Zr has characteristics of a doubly-magic nucleus. Adding only a few neutrons more, the Zr-isotopes get strongly deformed. This behaviour indicates a shape phase transition around N=60. For the Z=38 (Sr) isotopes the systematics show a similar behaviour, whereas for the Z=42 (Mo) and Z=44 (Ru) isotopes, this rapid change of the shape seems to be attenuated.

The aim of this work was to investigate the behaviour of the even-even Z=36 (Kr) isotopes in this phase transition region by determining the energies of the 2_1^+ states and their E2 decay transition strengths to the ground state in 94 Kr (N=58) and 96 Kr (N=60). Information on the energies of the first excited 2^+ states exist only for the Kr isotopes up to N=58. For N=60, contradictory results on this observable were published recently.

To clarify this contradiction several experimental runs were performed at the REX-ISOLDE facility at CERN between 2009 and 2011, utilizing the high-efficiency MINIBALL gamma-ray spectrometer and analyzing the emitted gamma-rays and scattered particles after the Coulomb-excitation reactions. The results of these experiments will be presented and discussed in the framework of the proton-neutron interacting boson model based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.