Beta-delayed neutron spectroscopy with an ion trap

S. A. Caldwell^{1,2}, J. A. Clark¹, A. Pérez Galván¹, G. Savard^{1,2}, N. D. Scielzo³, R. M.

Yee^{3,4}, P. F. Bertone¹, F. Buchinger⁵, C. M. Deibel⁶, J. Fallis⁷, J. P. Greene¹, S. Gulick⁵,

D. Lascar^{1,8}, A. F. Levand¹, G. Li⁵, E. B. Norman^{3,4}, S. Padgett³, M. Pedretti³, R. E.

Segel^{1,8}, K. S. Sharma⁹, M. G. Sternberg^{1,2}, J. Van Schelt^{1,2}, B. J. Zabransky¹

¹ Argonne National Laboratory, Argonne, IL 60439, USA

² University of Chicago, Chicago, IL 60637, USA

³ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

⁴ University of California, Berkeley, CA 94720, USA

⁵ McGill University, Montreal, QC H3A 0G4, Canada

⁶ Louisiana State University, Baton Rouge, LA 70803, USA

⁷ TRIUMF, Vancouver, BC V6T 2A3, Canada

⁸ Northwestern University, Evanston, IL 60208, USA

⁹ University of Manitoba, Winnipeg, MB R3T 2N2, Canada

The properties of β -delayed neutron (β n) emission are important in basic and applied nuclear physics. The neutron spectra and branching ratios of β n emitters reflect the evolution of nuclear structure in neutron-rich nuclei. Branching ratios can affect the population of heavy elements in the universe resulting from the astrophysical r process. Energy spectra and branching ratios of β n emitters are also important to stockpile stewardship and the safe design of nuclear reactors. Recently we demonstrated a novel technique for βn spectroscopy using ${}^{137}I^+$ ions confined to a $\sim 1 \text{mm}^3$ volume within a Paul trap [1, 2]. By measuring the time-of-flight spectrum of ions recoiling from both the β and β n processes, the β n branching ratio and spectrum can be determined. This recoil-ion technique has several advantages over techniques that rely on neutron detection: the recoil ions are easily detectable; complications due to scattered neutrons and γ -rays are avoided; and the β n branching ratio can be extracted in several different ways. Our demonstration measurement achieved an absolute precision of $\sim 1\%$ in the β n branching ratio and 10-20% energy resolution in the neutron spectrum over the range 200-1500 keV, with 30 ions/sec delivered to the trap. A campaign of measurements is currently underway at Argonne with a $10 \times$ improvement in coincident detection efficiency and energy resolution reaching $\sim 3\%$. A further-upgraded version of this experiment is planned at Argonne's CARIBU facility. The recoil-ion technique will be described and the status of the current campaign and future prospects for the CARIBU experiment will be discussed. Prepared by ANL under Contract DE-AC02-06CH11357, LLNL under Contract DE-AC52-07NA27344, and Northwestern U. under Contract DE-FG02-98ER41086.

References

- [1] R. M. Yee *et al.*, submitted to Phys. Rev. Lett.
- [2] N. D. Scielzo *et al.*, Nucl. Instr. and Meth. A, **681**, (2012), 94-100.