TWO AND FOUR PROTON DECAYS IN ⁸C AND ¹²O GROUND STATES AND THEIR ISOBARIC ANALOGS

R. J. Charity¹, M. F. Jager¹, L. G. Sobotka¹, Z. Chajecki², D. Coupland², J. M. Elson¹,
H. Iwasaki², M. Kilburn², M. Kurokawa⁵, J. Lee², W. G. Lynch², J. Manfredi¹, S. T.
Marley³, M. McCleskey⁴, H. Mohammad¹, R. G. Pizzone⁴, B. T. Roeder⁴, R. Shane¹, A. Sanetullaev², D. V. Shetty³, E. Simmons⁴, A. Spiridon⁴, L. Trache⁴, M. B. Tsang², J. Winkelbauer², A. H. Wuosmaa³, M. Youngs²

¹ Washington University, St. Louis, MO 60130, USA

² NSCL, Michigan State University, East Lansing MI 48824, USA

³ Western Michigan University, Kalamazoo, MI 49008, USA

⁴ Texas A&M University, College Station, Tx 77843

⁵ RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

Two-proton decay of the proton-rich members of the A=8 and 12 quintets (T=2) have been studied. The ⁸C ground state and its isobaric analog state (IAS) in ⁸B were created in neutron and proton knockout reactions from a ⁹C beam at the National Superconducting Cyclotron Laboratory. The decay products were detected in the HiRA array and the parent nuclei were reconstructed using the invariant mass method. Using a ¹³O beam produced at the Texas A&M Cyclotron facility, the ¹²O ground state and its IAS in ¹²N were produced and the two-proton-decay products detected. Highlights of this work are:

- The ground state of ${}^{8}C$ decays into an α particle and four protons. From the correlations between the decay products, we infer that decay was not five-body in nature, but proceeded as two sequential steps of two-proton decay passing through the ${}^{6}Be$ intermediate state. The first two-proton step had an enhanced "diproton" component.
- The width of the ¹²O ground state was determined to be less than 72 keV, incompatible with previous measurements, but consistent with theoretical predictions.
- The IAS's of ⁸C in ⁸B and ¹²O in ¹²N were found to undergo two-proton decay to the IAS's in ⁶Li and ¹⁰B, respectively. These states represent a new class of two-proton emitters where single-proton decay is energetically allowed, but isospin forbidden, whereas two-proton decay conserves both quantities. This was the first observation of the IAS in ¹²N.
- For isospin symmetry, the masses of the quintets should follow a quadratic dependence on isospin projection given by the isobaric multiplet mass equation (IMME). Using our new values of the masses of the observed states, we find the A=8 quintet has deviations from the IMME where the A=12 quintet is consistent with it.

This work was supported by the U.S. Department of Energy, Division of Nuclear Physics under grants DE-FG02-87ER-40316, DE-FG02-93ER40773 and DE-SC004972 and the National Science Foundation under grants PHY-0606007 and PHY-9977707.