PRECISION MASS MEASUREMENTS BEYOND NEUTRON-RICH ¹³²Sn AT JYFLTRAP

T. Eronen^{1,2}, J. Dobaczewski¹, D. Gorelov¹, J. Hakala¹, A. Jokinen¹, A. Kankainen¹, V.S. Kolhinen¹, M. Kortelainen¹, I.D. Moore¹, H. Penttilä¹, S. Rinta-Antila¹, J. Rissanen¹, A. Saastamoinen¹, V. Sonnenschein¹, and J. Äystö¹

¹ Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

² Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, DE-69117 Heidelberg, Germany

Atomic masses of nuclei near the doubly magic nucleus ¹³²Sn are of key interest for nuclear structure studies. Precise atomic masses allow the extraction of quantities such as neutron and two-neutron separation energies through which changes in nuclear structure can be revealed. Additionally, high-precision mass values in this region contribute to studies of the r-process nucleosynthesis path in nuclear astrophysics.

We have measured atomic masses of several nuclei near ¹³²Sn at the University of Jyväskylä, Finland, using the JYFLTRAP double Penning trap setup [1]. The nuclei of interest were produced using the IGISOL method [2] which results in a fast and chemically inselective extraction of short-living ions. Our measurements extended to the neutron rich nuclei ¹³⁵Sn, ¹³⁶Sb and ¹⁴⁰Te. Several of the nuclei have low-lying isomeric states. Since high-precision mass measurements with Penning traps require monoisomeric samples, we used a sophisticated cleaning method to remove the unwanted states [3].

Masses were measured to a precision on the order of 5 keV or better. Not only ground state masses were measured but also isomeric states where applicable. The achieved precision afforded a detailed study of neutron pairing [4]. In this contribution, experimental results and comparison to theoretical calculations will be presented.

References

- [1] T. Eronen *et al.*, Eur. Phys. J. A **48**, 46 (2012).
- [2] J. Äystö, Nucl. Phys. A, **693**, 477 (2001).
- [3] T. Eronen *et al.*, **266**, 4527 (2008).
- [4] J. Hakala, J. Dobaczewski et al., arXiv:1203.0958v2 (2012).