On the evolution of the neutron $0d_{5/2}$ and $1s_{1/2}$ orbitals in neutron-rich 0p-1s0d shell nuclei*

C. R. Hoffman¹, M. Albers¹, M. Alcorta¹, S. Almaraz-Calderon¹, S. I. Baker¹,

B. B. Back¹, S. Bedoor², P. F. Bertone¹, J. A. Clark¹, C. M. Deibel^{1,3}, S. J. Freeman⁴,

B. P. Kay^{1,5}, J. C. Lighthall^{1,2}, S. T. Marley^{1,2}, T. Palchan-Hazan¹, G. Perdikakis^{3,6},

K. E. Rehm¹, A. M. Rogers¹, A. Rojas⁷, D. Santiago-Gonzalez⁷, J. P. Schiffer¹,

D. K. Sharp⁴, D. V. Shetty², J. S. Thomas⁴, I. Wiedenhover⁷, and A. H. Wuosmaa²

¹ Argonne National Laboratory, Argonne, IL 60439, USA

² Western Michigan University, Kalamazoo, MI 49008, USA

³ JINA, Michigan State University, East Lansing, MI 48824, USA

⁴ University of Manchester, Manchester M13 9PL, UK

⁵ University of York, Heslington, York YO10 5DD, UK

⁶ NSCL, Michigan State University, East Lansing, MI 48824, USA

⁷ Florida State University, Tallahassee, FL 32306, USA

A detailed look into the evolution of the $0d_{5/2}$ and $1s_{1/2}$ neutron orbitals has been performed using the ${}^{19}O(d, p)$ and ${}^{17}N(d, p)$ reactions at beam energies of 6.6 MeV/u and 13.5 MeV/u, respectively. The experiments were carried out in inverse kinematics with radioactive beams produced by the ATLAS in-flight facility, and protons in coincidence with heavy ion recoils were detected by the helical orbit spectrometer (HELIOS) [1]. Eight levels in ²⁰O, including a previously unobserved $J^{\pi} = 3^+$ level at $E^* = 5.23$ MeV, and at least three states in 18 N, were observed with measurable strengths. Q values were measured with an energy resolution of ~ 200 keV, and spectroscopic factors were extracted from angular distributions through a distorted wave Born approximation analysis. Results from the ¹⁹O(d, p)²⁰O reaction established the $\ell = 0$ and 2 strength distributions in this region, and allowed for the determination of the J = 0, 2 and 4, $T = 1 \langle (0d_{5/2})^2 J | V | (0d_{5/2})^2 J \rangle$ empirical two-body matrix elements of the NN interaction. Identification of $0d_{5/2}$ and $1s_{1/2}$ dominated levels in ¹⁸N, those having large overlaps with the ¹⁷N ground state, illuminates the N = 11 transition region between ¹⁹O, which has a $J^{\pi} = 5/2^+$ ground state and a high lying $1/2^+$ excited state, and the exotic $J^{\pi} = 3/2^{+17}$ C nucleus [2]. In addition to empirical systematics, results will be discussed in terms of modern 0p-1s0d and 1s0d confined shell-model interactions, as well as their impact on clarifying the underlying mechanisms leading to the evolution of the magic numbers [3].

*Supported in part by the U.S. DOE, under Contract No. DE-AC02-06CH11357 and No. DE-FG02-04ER41320, the NSF under Grant Nos. PHY-02-16783, PHY-07-54674, PHY-07-58099, and the UK S&T Facilities Council.

[1] A. H. Wuosmaa *et al.*, Nucl. Instr. Meth. A **580**, 1290 (2007). J. C. Lighthall *et al.*, Nucl. Instr. Meth. A **622**, 97 (2010).

[2] Z. Elekes et al., Phys. Lett. B 614, 174 (2005) and references therein.

[3] T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010) and references therein.