High-spin Structure of Neutron-rich ²⁴⁸⁻²⁵⁰Cf (N=150-152)^{*}

S. S. Hota¹, P. Chowdhury¹, T. L. Khoo², M. P. Carpenter², R. V. F. Janssens², I. Ahmad², J.P. Greene², S. K. Tandel^{1,3}, D. Seweryniak², S. Zhu², P. F. Bertone², C. J. Chiara^{2,4}, A. Y. Deo¹, C. J. Guess¹, G. Henning², C. R. Hoffman², E. G. Jackson¹, F. G. Kondev², S. Lakshmi¹, T. Lauritsen², C. J. Lister¹, E. A. McCutchan², C. K. Nair², U. Shirwadkar¹

¹Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA ²Argonne National Laboratory, Argonne, IL 60439, USA ³UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098, INDIA ⁴University of Maryland, College Park, MD 20742, USA

Experimental studies of the excitations of the heaviest elements around $Z \sim 100$, $A \sim 250$, whose unexpected stability is attributed to shell effects, provide important checks of theoretical model predictions, in particular for the location of the next higher spherical shell gaps. While fusion- evaporation reactions have led the way for the spectroscopy of the heaviest elements with $Z \ge 100$, complementary information gathered from Z < 100 nuclei via deep-inelastic and transfer reactions provides a more comprehensive template for understanding both collective and single-particle behavior in this region, where proton and neutron orbitals in the highest oscillator shells are active participants. In our quest for understanding the structures of transplutonium elements [1], we report here on new spectroscopic observations in the relatively neutron-rich nuclei ²⁴⁸⁻²⁵⁰Cf (Z=98, N=150-152).

High-spin states in ²⁴⁸⁻²⁵⁰Cf nuclei were populated via deep-inelastic and transfer reactions using a ²⁰⁸Pb beam incident on a radioactive ²⁴⁹Cf target. Prompt γ rays were detected with the Gammasphere array. The ground-state bands of ²⁴⁸Cf and ²⁵⁰Cf [2] have been extended to highspins and the K^π = 2⁻ octupole band in ²⁴⁸Cf has been observed for the first time. In addition to the previously observed ground-state bands of ²⁴⁹Cf [1], a new pair of bands built on a neutron single-particle orbital has been identified. These spectroscopic studies bridge a gap that existed in the systematics for N = 150, 151 and 152 isotones. The complete alignment systematics for isotopes and isotones of ²⁴⁸⁻²⁵⁰Cf show interesting variations. Possible connections to non-axial octupole collective effects that have been shown to be important in this region [3] will be discussed. The new data will be presented in the context of the extended systematics of this region and available theoretical predictions for the neutron-rich, transplutonium N ≥ 150 nuclei.

* Supported by USDOE Grants DE-FG02-94ER40848 and DE-AC02-06CH11357.

References

- [1] S. K. Tandel *et al.*, Phys. Rev. C **82**, 041301(R) (2010).
- [2] R. Takahashi et al., Phys. Rev. C 81, 057303 (2010).
- [3] I. Wiedenhöver et al., Phys. Rev. Lett. 83, 2143 (1999).