New half-lives of r-process nuclei in the vicinity of ⁷⁸Ni

M. Madurga¹, K. P. Rykaczewski², R. Surman³, R. Grzywacz^{1,2}, C.J. Gross², D. Miller¹, D.W. Stracener², J.C. Batchelder⁴, N.T. Brewer⁵, L. Cartegni¹, J.H. Hamilton⁵, J.K. Hwang⁵, S.H. Liu⁴, S.V. Ilyushkin⁶, C. Jost¹, M. Karny^{4,7}, A. Korgul^{7,8}, W. Królas⁹, A. Kuźniak^{1,7}, C. Mazzocchi^{7,8}, A.J. Mendez II², K. Miernik^{2,7}, S.W. Padgett¹, S.V. Paulauskas¹, A.V. Ramayya⁵, J.A.Winger⁶, M. Wolińska-Cichocka^{2,4}, E.F. Zganjar¹⁰ and I.N. Borzov¹¹
¹Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 ²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 ³Dept. of Physics, Union College, Schenectady, New York 12308 ⁴Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 ⁵Dept. of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235

⁶Dept. of Physics and Astronomy, Mississippi State University, Mississippi 39762

⁷Faculty of Physics, University of Warsaw, Warszawa PL 00-681, Poland ⁸Joint Institute for Heavy-Ion Reactions, Oak Ridge, Tennessee 37831

⁹Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, PL 31-342, Poland

¹⁰Dept. of Physics and Astronomy, LSU Baton Rouge, Louisiana 70803

¹¹Joint Institute for Nuclear Research. 141980 Dubna, Russia

The β -decays of neutron-rich nuclei near the doubly magic ⁷⁸Ni were studied at the Holifield Radioactive Ion Beam Facility (HRIBF) using an electromagnetic isobar separator. The half-lives of ⁸²Zn (228±10 ms), ⁸³Zn (117±20 ms) and ⁸⁵Ga (93±7 ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations [1]. The experimentally measured values were applied to calibrate a new Density Functional used for half-life calculations. It was observed that in the region of interest of this work, half-lives are very sensitive to the ordering of proton single particle states. A sample rapid neutron capture nucleosythesis calculation using our new set of measured and calculated half-lives shows a significant redistribution of isobaric abundances and a strengthened yield of A>140 nuclei.

This work was supported by the U.S. Department of Energy Office of Nuclear Physics

References

[1] P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).