STRUCTURE OF ⁹C FROM THE ¹⁰C(d,t)⁹C REACTION AND THE RELIABILITY OF AB-INITIO TRANSFER FORM FACTORS

S.T. Marley^{1,2}, A.H. Wuosmaa¹, S. Bedoor¹, J.C. Lighthall^{1,2}, D.V. Shetty¹, M. Alcorta², P.F. Bertone², J.A. Clark², C.M. Deibel³, C.L. Jiang², T. Palchan-Hazan², R.C. Pardo², K.E. Rehm², A.M. Rogers², C. Ugalde^{2,4}, R.B. Wiringa²

¹Western Michigan University, MI 49008-5252 USA ²Physics Division, Argonne National Laboratory, Argonne, IL 60439 USA ³Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 USA ⁴Joint Institute for Nuclear Astrophysics, University of Chicago, Chicago, IL 60637 USA

The structure of the neutron-deficient nucleus ⁹C is poorly known. Only a few excited states have been observed and little information exists on their single-particle characteristics. The measured ground-state magnetic dipole moment is anomalously small in comparison to the mirror nucleus ⁹Li, suggesting possible higher order configurations in the ground state wave function. Both 10 C and ⁹C are accessible via *ab-initio* calculations using modern techniques such as the Quantum Monte Carlo (QMC) approach [1]. In addition to the excitation energies in the A = 9 and 10 systems, it is possible to calculate the spectroscopic overlaps that are relevant for the neutronremoving reaction ${}^{10}C(d,t)^9C$ with the wave functions for both ${}^{9,10}C$. In order to test the predictions from this and other calculations of the neutron-pickup spectroscopic factors, we have studied the ${}^{10}C(d,t)^{9}C$ reaction, in inverse kinematics. The radioactive ${}^{10}C$ beam was produced at the ATLAS In-flight facility through the $p({}^{10}B, {}^{10}C)n$ reaction using a 185-MeV ${}^{10}B$ beam incident on a cryogenic H₂ gas cell. The secondary ${}^{10}C$ beam had an energy of 171 MeV and an intensity of approximately 2×10^4 pps. The beam was incident on a 650 µg/cm² deuterated polyethylene (CD₂)_n target. Tritons were detected in a series of annular double sided silicon detectors covering Θ_{lab} between 8 and 42 degrees. The heavy recoils from particle-bound, or unbound states in ⁹C were detected in a set of forward-angle silicon detectors in a Δ E-E configuration. The ground-state transition was clearly observed and angular-distribution data were extracted. The neutron-pickup spectroscopic factor was deduced from a comparison with distorted-wave Born approximation calculations, with bound-state form factors calculated either with the usual approach of calculating a n-⁹C bound state in a Woods-Saxon potential, or from wave functions derived from QMC calculations. A comparison between the results using these two methods will be presented providing insight into the reliability of form factors for nucleon transfer derived from ab-initio approaches. Work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 and DE-AC02-06CH11357.

References

[1] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53-90 (2001).