MULTIPLE OCTUPOLE BANDS AND SHAPE CHANGE IN ²²¹TH*

W. Reviol¹, D. G. Sarantites¹, J. B. Snyder¹, O. L. Pechenaya¹, M. P. Carpenter², C. J. Chiara², R. V. F. Janssens², T. Lauritsen², D. Seweryniak², S. Zhu², K. Hauschild³, A. Lopez-Martens³, and D. J. Hartley⁴

¹Washington University, St. Louis, MO 63130, USA ²Argonne National Laboratory, Argonne, IL 60439, USA ³CSNSM, IN2P3-CNRS, F-91405, Orsay Campus, France ⁴US Naval Academy, Annapolis, MD 21402, USA

Alternating-parity level structures connected by strong E1 transitions represent one of the experimental signatures for an octupole-deformed nuclear shape. Such bands have been found, particularly around ²²⁴Th and ¹⁴⁶Ba [1]. A study of ²²¹Th seems interesting for two reasons. First, there is a marked difference from the structure of 219,223 Th [2,3]. In the latter nuclei, pairs of nearly degenerate spin-parity states I⁺ and I⁻ (parity doublets) are found that give rise to two bands, whereas in ²²¹Th only one band is reported [3]. Hence, delineation of the non-yrast structure of ²²¹Th is desirable. Second, the concentration of decay intensity in one band, like in an even-even nucleus, predestines ²²¹Th as a case for studying the feeding of octupole bands. Indeed, for ²²²Th an octupole to reflection-symmetric shape transition has been predicted at high spin (e.g. Fig. 39 of Ref. [1]). The experimental study of ²²²Th [4] remained somewhat inconclusive with respect to this issue, and a study of ²²¹Th is complementary.

The nucleus has been studied using the 207 Pb(18 O,4n) 221 Th, E_{lab} = 96 MeV fusion-evaporation reaction and the Gammasphere + HERCULES detector combination. HERCULES helps to separate the γ rays of the evaporation residues from those of the dominant fission products. Based on selected γ -ray coincidence data, the previously reported level scheme [3] has been improved as follows: (*i*) The yrast octupole band has been corrected at medium spin (I^{π} = 31/2⁺, 33/2⁻) and extended up to I^{π} = 39/2⁺ and 37/2⁻. Here, the alternating-parity level structure appears to be cut off, but the level scheme extends farther. The placement of a higher lying transition establishes a spin of 43/2. (*ii*) The non-yrast structure of 221 Th includes another octupole band. The band has similar B(E1)/B(E2) ratios as the yrast band (3 \cdot 10⁻⁶ fm⁻² on average), but is elevated by 400 keV relative to the latter.

The discussion of ²²¹Th will focus on two aspects: (*i*) The rotational frequency reached at the highest spins ($\hbar\omega = 0.26$ MeV) concurs with the critical frequency for the predicted shape transition in ²²²Th. (*ii*) The absence of parity doublets in ²²¹Th is related to the low K value of the ground-state configuration.

References

- [1] P.A. Butler and W. Nazarewicz, Rev. Mod. Phys. 88, 349 (1996).
- [2] W. Reviol et al., Phys. Rev. C 80, 011304(R) (2009).
- [3] M. Dahlinger et al., Nucl. Phys. A484, 337 (1988).
- [4] J.F. Smith et al., Phys. Rev. Lett. 75, 1050 (1995).