STRUCTURE OF LOW-LYING OCTUPOLE STATES IN THE MASS 160 REGION

M. A. Stankiewicz^{1,2}, R. A. Bark¹, F. Dönau³, D. G. Aschman², P. Datta¹, T. S. Dinoko¹, T. T. Ibrahim¹, E. A. Lawrie¹, J. J. Lawrie¹, S. N. T. Majola¹, S. M. Mullins¹, J.-F. Sharpey-Schafer¹.

¹ iThemba LABS, P.O. Box 722, Somerset West, 7129 South Africa

² Department of Physics, University of Cape Town, Rondebosch, 7700, South Africa

³ Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden,

Germany

Recent theoretical work [1] suggested that nuclei in the rare earth region around $Z \sim 64\text{-}70$ and $N \sim 90\text{-}94$ may exhibit excited states that are tetrahedrally deformed. A consequence of a purely tetrahedrally deformed band is the absence of a quadrupole deformation, and the corresponding suppression of in-band E2 transitions. *Odd-spin*, negative parity bands (npb) with small ratios of in-band B(E2) to out-of-band B(E1) ratios, in the vicinity of nuclei such as ${}^{156}_{64}\text{Gd}_{92}$ [1] were early candidates for tetrahedral rotation. However, these bands are always accompanied by *even-spin* npb's with large B(E2)/B(E1) ratios.

The tetrahedral hypothesis has since been ruled out by recent experimental values of quadrupole moments, implying that the odd and even spin bands have the same deformation [2]. As a result, absolute B(E1) values can be inferred in a number of cases, as shown below. The large differences between out-of-band B(E1) values remained a mystery.

At the iThemba LABS cyclotron, using the AFRODITE array, a growing list of nuclei have been studied in this region, including ^{158,160}Yb, ^{156,158,160}Er, ¹⁵⁸Dy, and ^{152,154}Gd allowing a comprehensive set of systematics to be obtained.

In all cases low-lying odd and even spin npb's were observed, with the even-spin bands having larger B(E2)/B(E1) values. We find a more reasonable description of these bands as octupole vibrations of the nucleus, and explain the B(E1) anomalies within the framework of the Random Phase Approximation.

References

- [1] J. Dudek et al., Phys. Rev. Lett. 88, 252502 (2002)
- [2] R.A. Bark *et al.*, Phys. Rev. Lett. **104**, 022501 (2010)