GYROMAGNETIC RATIOS IN STABLE AND NEUTRON-RICH SEMI-MAGIC NUCLEI BY THE RECOIL IN VACUUM METHOD

A.E. Stuchbery¹, J.M. Allmond², A. Galindo-Uribarri^{3,4}, E. Padilla-Rodal⁵, D.C. Radford³, J.C. Batchelder⁶, J.R. Beene³, N. Benczer-Koller⁷, C.R. Bingham⁴, M.E. Howard⁷, G.J. Kumbartzki⁷, J.F. Liang³, B. Manning⁷, S.D. Pain³, N.J. Stone^{4,8}, R.L. Varner³, C.-H. Yu³

¹ Department of Nuclear Physics, Australian National University, Canberra, ACT 0200, Australia

² JIHIR, Oak Ridge National Laboratory, Oak Ridge, TN 37831

³ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁴ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996

⁵ Instituto de Ciencias Nucleares, UNAM, AP 70-543, 04510 México, D.F., México

⁶ UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37831

⁷ Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903
 ⁸ Department of Physics, Oxford University, Oxford, OX1 3PU, UK

Several theoretical approaches have predicted the g factors of 2_1^+ states in the semimagic Sn isotopes, and in neutron-rich Te isotopes near ¹³²Sn [1, 2]. However, the experimental data have remained incomplete. In this paper we present new g-factor measurements by the recoil in vacuum (RIV) method [3], systematically covering the stable even tin isotopes between ¹¹²Sn and ¹²⁴Sn, and neutron-rich ¹²⁶Sn. Tellurium isotopes, including semimagic ¹³⁴Te produced as a radioactive beam, have also been studied. The experiments were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) by Coulomb exciting ~ 3 MeV/u beams in inverse kinematics on carbon targets, and using the CLARION+HyBall arrays to observe the perturbed particle- γ angular correlations. The measurements on the radioactive beam of ¹³⁴Te have sufficient precision to distinguish between the model calculations, which predict $g(2_1^+)$ values ranging from 0.5 to 0.86 [1].

To establish the requirements for future measurements on neutron-rich Ni isotopes, the RIV method has also been applied to 1.8 MeV/u ⁶²Ni beams, for which $g(2_1^+)$ is known.

*Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy, and by the Australian Research Council grant no. DP0773273.

References

- J. Terasaki *et al.*, Phys. Rev. C **66**, 054313 (2002);
 N. Shimizu *et al.*, Phys. Rev. C **70**, 054313 (2004);
 B. A. Brown *et al.*, Phys. Rev. C **71**, 044317 (2005).
- [2] A. Ansari, P. Ring, Phys. Lett. **B** 649, 128 (2007).
- [3] N. J. Stone *et al.*, Phys. Rev. Lett. **94**, 192501 (2005).