Collective Structures at Ultrahigh Spin in the Rare Earth Region: A New Chapter in the Story of Rapid Nuclear Rotation and A New Challenge for Understanding Triaxiality in Nuclei

X. Wang¹, M. A. Riley¹, J. Simpson², E. S. Paul³, R. V. F. Janssens⁴, A. D. Ayangeakaa⁵, H. C. Boston³, M. P. Carpenter⁴, C. J. Chiara^{4,6}, U. Garg⁵, P. Hampson³, D. J. Hartley⁷, C. R. Hoffman⁴, F. G. Kondev⁸, T. Lauritsen⁴, N. M. Lumley⁹, J. Matta⁵, S. Miller¹, P. J. Nolan³, J. Ollier², M. Petri¹⁰, D. C. Radford¹¹, J. M. Rees³, J. P. Revill³, L. L. Riedinger¹², S. V. Rigby³, C. Unsworth³, S. Zhu⁴, and I. Ragnarsson¹³ ¹ Department of Physics, Florida State University, Tallahassee, FL 32306, USA ² STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom ³ Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom ⁴ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA ⁵ Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA ⁶ Dept. of Chemistry and Biochem., Univ. of Maryland, College Park, MD 20742, USA ⁷ Department of Physics, United States Naval Academy, Annapolis, MD 21402, USA ⁸ Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA ⁹ Schuster Laboratory, Univ. of Manchester, Manchester, M13 9PL, United Kingdom ¹⁰ Nucl. Sci. Div., Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ¹¹ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ¹² Dept. of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA ¹³ Div. of Math. Phys., LTH, Lund University, P. O. Box 118, SE-221 00 Lund, Sweden In the rare earth nucleus ¹⁵⁸Er, many fascinating phenomena that occur with increas-

In the rare earth nucleus ¹⁵⁸Er, many fascinating phenomena that occur with increasing excitation energy and angular momentum have been observed. The latest one is a spectacular return to collectivity in the form of three rotational bands at spins beyond band termination [1, 2]. These three bands have been suggested to possess a triaxial strongly deformed shape based on a comparison of transition quadrupole moments (Q_t) between experiment and theory [3, 2]. Some questions arising in the above comparison, which represent a challenge for understanding triaxiality in nuclei, will be discussed. The recent discoveries in ¹⁵⁸Er opend a new chapter in the story of rapid nuclear rotation and have also triggered a comprehensive project to explore such phenomena in the light rare earth nuclei, for example, ¹⁵⁷Ho [2]. New results on ¹⁵⁷Ho (and, possibly, those from the to-be-performed ¹⁶⁰Yb DSAM experiment) will also be presented.

References

- [1] E. S. Paul, et al., Phys. Rev. Lett., 98, (2007), 012501.
- [2] X. Wang, et al., J. Phys. Conf. Ser., in press.
- [3] X. Wang, et al., Phys. Lett. B, 702, (2011), 127.