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Experimental relevance:
FRIB, ATLAS, NSCL,
LENP Facilities, NNSA 
facilities, JLab, JINA,
SNS, …

The Nuclear Landscape and the Big Questions (NAS report)

• How did visible matter come into being and how does it 
evolve?

• How does subatomic matter organize itself and what 
phenomena emerge?

• Are the fundamental interactions that are basic to the 
structure of matter fully understood?

• How can the knowledge and technological progress 
provided by nuclear physics best be used to benefit 
society? 
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Why	
  is	
  this	
  interes9ng?
Many-­‐body	
  physics:
Strong	
  coupling	
  of	
  spin	
  to	
  space	
  (tensor,	
  spin-­‐orbit)
Strong	
  Pairing	
  (	
  Δ	
  /	
  EF	
  from	
  0.03~0.3)
CompeFFon	
  between	
  single-­‐parFcle	
  evoluFon	
  and	
  pairing
Clustering	
  (	
  8Be,	
  12C	
  Hoyle	
  state,	
  ...)

Nuclear	
  physics:
Neutron-­‐rich	
  nuclei	
  and	
  limits	
  of	
  stability
Nucleosynthesis:	
  light	
  (BBN	
  fusion)	
  &	
  heavy	
  elements	
  (SN,	
  neutron	
  star)
CorrelaFons	
  and	
  nuclear	
  response

Ties	
  to	
  other	
  fields:
fundamental	
  symmetries	
  and	
  BSM	
  (ββ	
  decay,	
  superallowed	
  β	
  decay,...)
astrophysics	
  (reacFons,	
  neutrinos,	
  gravity	
  waves,	
  ...)
cold	
  atom	
  physics	
  (superfluidity,	
  universality,	
  Efimov,	
  ...)

Illustrate	
  progress	
  and	
  challenges
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Light	
  Nuclei

Spectra	
  reproduced	
  with	
  `realisFc’	
  NN	
  +	
  NNN	
  interacFons

Pieper,	
  Wiringa,	
  et	
  al.

Spectra MagneFc	
  Moments

see	
  Pastori	
  talk



Light Nuclear Reactions

Ab	
  ini9o	
  theory	
  reduces	
  uncertainty	
  due	
  
to	
  conflicFng	
  data

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.107.122502

3He

d 4He

p
Navratil	
  &	
  Quaglioni
PRL108,	
  042503	
  (2012)

NCSM/RGM	
  is	
  pioneering	
  ab	
  
ini9o	
  calculaFons	
  of	
  light-­‐
nuclei	
  fusion	
  reacFon	
  with	
  NN	
  
interacFon.	
  Here,	
  3He(d,p)
4He S-factor.

Data deviate from NCSM/RGM results at 
low energy due to lab. electron-screening

Also	
  recently	
  width	
  calculaFons	
  :	
  
see	
  Ken	
  Nollet	
  talk

NavraFl,	
  Quaglioni,...
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FIG. 2: (Color online) The integrand of Eq. (5) (×2µ/k!w)
is shown for the p1/2 (red squares) and p3/2 (blue circles)
neutrons in 8Li → n 7Li. It is binned by the n-7Li separation
rcc with bars showing Monte Carlo errors. The solid curves
are cumulative integrals of Eq. (5), starting from the origin; at
large rcc, they are the ANCs (divided by 2 for visibility on this
scale). The dotted curve with no scale shows the distribution
of Monte Carlo samples.

integral is computed with relatively small statistical er-
rors.
The computed Clj depend sensitively on the separation

energies B. Equation (5) contains B implicitly through
k =

√
2µB/! and η ∝ 1/

√
B, and it is rigorously true

when B = Eint − E for the given potential. However,
there are often significant differences between this B and
the experimental separation energy Bexpt. We computed
several ANCs in light nuclei, first using the GFMC BH

for the AV18+UIX Hamiltonian and then using Bexpt.
The use of Bexpt in Eq. (5) may be understood by con-

sidering small changes to the potential. When B $ |E|,
they can produce small changes in the wave-function
interior but large fractional changes in B. The short-
range part of the variational wave function derived from
AV18+UIX is, therefore, similar to the solution that
would be obtained from a slightly different potential
tuned (e.g. with small extra terms) so that BH = Bexpt.
Inserting a k ∝

√

Bexpt into Eq. (5) matches a wave-
function interior approximating the true wave function
onto the asymptotic form corresponding to Bexpt. In-
structive illustrations of this general principle, applied to
much simpler wave functions, may be found in Ref. [27].
The use of Eq. (5) to compute asymptotic overlaps

is demonstrated in Fig. 1, where 8Li → n7Li over-
laps computed directly from Eq. (1) are plotted next to
CljW−ηm/r from Eq. (5). It can be seen that the W−ηm

corresponding to BH = 1.3 MeV [28] are rather different
from those for Bexpt = 2.03 MeV, though both energies
are small fractions of the 41.3 MeV total binding energy
for 8Li.
For both B values, the asymptotic Rlj match the short-

to

2.13

(full range to 2.0)

FIG. 3: (Color online) Predicted ANCs from Eq. (5), divided
by experimentally-derived values from the references given at
the right (those not appearing elsewhere are Refs. [29–31]).
For each ANC, small error bars indicate the Monte Carlo error
of Table I and larger error bars indicate its quadrature sum
with the experimental error. Results for the same computed
ANC divided by different “experimental” numbers are joined
with dashed lines. Parentheses indicate particularly uncertain
experimental constraints.

range overlaps at ∼ 4 fm, where the ANC integral starts
to converge. Use of BH yields C2

p 1/2 = 0.029(2) fm−1

and C2
p 3/2 = 0.237(9) fm−1, compared with the respec-

tive values 0.048(6) fm−1 and 0.384(38) fm−1 from a
transfer-reaction study [5]. The match between the com-
puted and “measured” results is poor. Using Bexpt yields
0.048(3) fm−1 and 0.382(14) fm−1, in very good agree-
ment with experiment. This pattern of agreement with
experiment for Bexpt but disagreement for BH repeats
in all cases of substantial difference between BH and
Bexpt. In the following, we consider only ANCs computed
from Bexpt, and we assign uncertainties based entirely on
Monte Carlo statistics rather than (difficult) assessments
of the variational wave functions. Limited testing with
variant wave functions suggests that the total uncertainty
is not much larger than the statistical uncertainties.
Our results are shown in Table I and compared

with experimentally-derived numbers (where available)
in Fig. 3. The lowest three sections of Table I re-

n+3H
important
for	
  NIF

ANCs	
  from	
  light	
  nuclei
Nolle_	
  and	
  Wiringa



SRG-­‐N3LO
	
  	
  	
  	
  λ	
  =2	
  fm-­‐1

ħΩ	
  =15	
  MeV

24Si

1s
t  Case

 !

Anomalously	
  Long	
  LifeFme	
  of	
  	
  Carbon-­‐14	
  and	
  the	
  
importance	
  of	
  3-­‐nucleon	
  forces	
  

3-­‐nucleon	
  forces	
  suppress	
  criFcal	
  component

net	
  decay	
  rate	
  
Is	
  very	
  small

h_p://www.newscienFst.com/arFcle/mg21128214.400-­‐quantum-­‐quirk-­‐makes-­‐carbon-­‐daFng-­‐possible.html
h_p://phys.org/news/2011-­‐05-­‐physicists-­‐lifeFme-­‐carbon-­‐.html

Maris,	
  et	
  al,
Phys.	
  Rev.	
  Le_.	
  106,	
  202502	
  (2011)



The	
  ADLB	
  (Asynchronous	
  Dynamic	
  Load-­‐Balancing)	
  
library	
  &	
  GFMC.	
  GFMC	
  energy	
  93.5(6)	
  MeV;	
  expt.	
  92.16	
  
MeV.	
  	
  GFMC	
  pp	
  radius	
  2.35	
  fm;	
  expt.	
  2.33	
  fm.	
  

Ab	
  ini&o	
  descrip&on	
  of	
  12C

Epelbaum	
  et	
  al.,	
  Phys.	
  Rev.	
  Le_.	
  106,	
  192501	
  (2011)

GFMC	
  (Pieper	
  et	
  al.)

Lapce	
  EFT	
  (Lee,	
  Epelbaum,	
  Meissner,…)

0+(1)	
  fpp 0+(2)	
  fpp



Medium-Mass Nuclei: Coupled-cluster method 
Description of medium-mass open nuclear systems

G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012)

½+ virtual state

• Strong	
  coupling	
  to	
  
conFnuum	
  for	
  neutron	
  
rich	
  calcium	
  isotopes

• Level	
  ordering	
  of	
  states	
  
in	
  the	
  gds	
  shell	
  is	
  
contrary	
  to	
  naïve	
  shell	
  
model	
  picturesee also Thomas Duguet talk
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3.1. Unitarity
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Fig. 1. AFMC lattice calculations of the unitary Fermi Gas ξ parameter, updated from Ref. 23).
Symbols are for different kinetic terms as a function of particle number and lattice size. The
lattice spacing is denoted as α. Simulations have been performed with L3 lattices, for different
values of lattice length L in each direction; open symbols are for even L=16,20,24; closed are
for odd L (see text). All extrapolations are consistent with ξ = 0.372(5).

A history of results for the Bertsch parameter is given in Ref. 28). The first DMC
calculation used up to 40 particles and a Poschl-Teller potential with kF re ≈ 0.3,
where re is the effective range of the interaction, and yielded a fixed-node energy of
ξ = 0.44(1).17) Subsequent DMC calculations used improved trial functions, larger
particle numbers, and better extrapolations to kF re → 0 to yield ξ = 0.40(1).33)

The best present DMC result is from the calculations of Ref. 34), while an updated
extrapolation to re → 0 gives ξ = 0.390(1)35) for an upper bound. This calculation
also carefully compared results at finite particle number to a superfluid Local Density
Approximation (LDA) to extrapolate to large N. It was found that calculations for
N = 38 or larger are very close to the thermodynamic limit.

There is also a substantial history of lattice simulations, both for the ground-
state,22), 24), 36)–38) and at finite temperature.21), 39) The earliest ground-state calcula-
tions estimated ξ = 0.25(3), for systems up to 22 particles on lattices up to 63. The
recent calculations of Ref. 23) use branching random walks and a BCS trial function
and importance sampling for systems of 66 particles on lattices up to 273 and obtain
ξ = 0.372(5) for several different actions. Updated results for these calculations are
shown in Figure 1.

In the figure, the upper curves use a k2 dispersion relation tuned to unitarity.

Equation of state: cold atoms and 
low-density neutron matter
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FIG. 1. (color online) The calculated ground state energy

shown as the value of ξ versus the lattice size for various

particle numbers and Hamiltonians.

100× reduction in computer time, compared to the usual
FG importance function. The improvement increased to
1500× for N = 38 in a 123 lattice. For larger systems,
the discrepancy is much larger still; indeed the statistical
fluctuations from the latter are such that often meaning-
ful results cannot be obtained with the run configurations
described above.

In Fig. 1 we summarize our calculations of the energy
as a function of ρ1/3 where ρ = N/N3

k , and the particle
number is N = 38, 48 or 66. We plot ξ, Eq. 1, where we
have in all cases used the infinite system free-gas energy

EFG = 3
5
�2k2

F
2m with k3F = 3π2 N

αN3
k
as the reference.

Hamiltonian N ξ err A err

�(2)k 14 0.39 0.01 0.21 0.12

38 0.370 0.005 0.14 0.04

66 0.374 0.005 0.11 0.04

�(4)k 38 0.372 0.002

48 0.372 0.003

66 0.372 0.003

�(h)k 4 0.280 0.004 -0.28 0.05

38 0.380 0.005 -0.17 0.03

48 0.367 0.005 -0.05 0.03

66 0.375 0.005 -0.13 0.03

TABLE II. Energy extrapolations to infinite volume, zero

range limit for various particle numbers N and different
Hamiltonians. The term linear in the effective range, A, is

also shown where it is not tuned to zero.

DMC calculations have found converged results when
using 66 particles[11, 12], and our results confirm this.
The differences between 38 and 66 particles are rather
small. Our calculations with 14 particles show a signif-
icant size dependence, and with 26 particles the effects
are still noticeable. These are not shown on the figure.
We have also computed the energy for 4 particle systems

for a variety of lattice sizes and find agreement with Ref.
[25]. The error bands in the figure provide least-squares
estimates for the one sigma error based upon quadratic
fits to the finite-size effects. The fits are of the form
E/EFG = ξ+Aρ1/3 +Bρ2/3. For the interactions tuned
to re = 0, a fit with A fixed to zero is used. Including
a linear coefficient in the fit yields a value statistically
consistent with zero.
The extrapolation in lattice size for the k2 and Hub-

bard dispersions show opposite slope as expected from
the opposite signs of their effective ranges. The extrap-
olation to ρ → 0 is consistent with ξ = 0.372(0.005) in
all cases. Our final error contains statistical component
and the errors associated with finite population sizes and
finite time-step errors. This value is below previous ex-
periments, but more compatible with recent experimental
results of the Zwierlein group[8].

0 0.1 0.2 0.3 0.4

k
F
 r

e

0.36
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0.38

0.39

0.4

0.41

0.42

ξ

N = 66

N = 38 DMC

FIG. 2. (color online) The ground-state energy as a function

of kF re: comparison of DMC and AFQMC results. Dashed

lines are DMC results, shifted down by 0.02 to enable com-

parison of the slopes.

We have also examined the behavior of the energy
as a function of kF re for finite effective ranges. It has
been conjectured[28] that the slope of ξ is universal:
ξ(re) = ξ+SkF re. Of course a finite range purely attrac-
tive interaction is subject to collapse for a many-particle
system, but a small repulsive many-body interaction or
the lattice, where double occupancy of a single species is
not allowed, is enough to stabilize the system. Our re-
sults are consistent with the universality conjecture. In
particular our results for zero effective range approach
the continuum limit with a slope consistent with zero.

Figure 2 compares the AFQMC results for the �(2)k in-
teraction with the DMC results [11, 12] for various values
of the effective range. The AFQMC produces somewhat
lower energies than the DMC, consistent with the upper-
bound nature of the DMC calculations. For the slope S of
ξ with respect to finite re, the fit to the N = 66 AFQMC
results yields S = 0.11(.03). Similar fits to the AFQMC

data with the Hubbard dispersion �(h)k for N = 66 yield

E / EFG = ξ + S kF re + ....
ξ = 0.372(5) QMC

  0.375(5) Expt (MIT)

S = 0.12(3) QMC

Towards largest Nuclei: neutron-rich matter
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Equation of State:  Cold atoms and Neutron Matter
comparison including effective range terms

Laboratory tests of strongly-paired many-body problem

Carlson, Gandolfi, Gezerlis, PTEP (2012) in press
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Fig. 2. Equation of state of cold atoms versus 1/(kF a). Blue circles are DMC calculations, the red
square and green diamond are lattice and experimental values at unitarity 1/(kF a) = 0. The
insert shows the corrections from finite effective range near unitarity (see text).

the analytic results near kFa = 0. At higher densities, the cold atom and neutron

matter equations of state start to diverge somewhat as the effective range becomes

important. The dependence of the equation of state on effective range can be made

explicit, as we discuss below. This dependence gives a quantitative picture of the

difference between neutron matter and cold atoms that could perhaps be tested in

cold atom experiments with narrow resonances. We will return to the finite-range

corrections below.

3.3. Equation of State: Unequal Masses

Cold atom experiments can also be performed with species of different mass,

providing important information about the structure of the ground state of the

unitary Fermi Gas. For species of different mass m↑ and m↓, if we normalize the ξ

parameter by the reduced mass EFG =
�2k2F
4µ , BCS theory would give a value of ξ

independent of the mass ratio r = m↑/m↓. The difference in Hamiltonians for equal

(r = 1,m↑ = m↓ = m) masses and unequal masses is

∆H =

N↑�

i=1

− �2∇2
i

2m↑
+

N↓�

i=1

− �2∇2
i

2m↓
−

N↑+N↓�

i=1

− �2∇2
i

2m

=

#pairs�

i=1

−∇2
i

4m

(r − 1)
2

(r + 1)2
, (11)

EOS and slope in cold atoms
Neutron Matter and cold atoms
with effective range term
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FIG. 5: (color online) Energy of the lowest neutron drop
states confined in a HO well with �Ω = 10 MeV (top) and
�Ω = 20 MeV (bottom) as a function of the number of neu-
trons. Results for AV8� (plus TNI) where obtained using
AFDMC, with MC statistical error bars but without system-
atic error bars; results for JISP16 are obtained from NCFC
with error bars reflecting the total numerical uncertainty, and
strict upper bounds obtained with NCSM in finite model
spaces. Note the pronounced dips at the expected HO magic
numbers (2, 8, & 20).
UPDATE FIGURE?
Can these two figures be made as one figure with no x-axis
labeleling in the upper figure??? This should be done in all
such stacked figures.
All figures should have just N as the x-axis label
Stefano – what about the wiggles in the AFDMC – particu-
larly N=26??

We clearly see the effect of the HO shells: jumps at 2,
8, and 20 neutrons, at which the next neutron has to
go to the next HO level. Note that these closed shells
are entirely due to the HO well, and are not caused by
the nuclear interactions. Without interactions between
the neutrons, we would still have this shell structure, but
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FIG. 6: (color online) Single energy differences in a 10 MeV
(top) and 20 MeV (bottom) HO well. Results of different
Hamiltonians are compared. AFDMC and GFMC error bars
are statistical only; NCFC error bars reflect the total numer-
ical uncertainty.
UPDATE FIGURE?
shift the results for different cases slightly so the error bars
from one case don’t obscure the ones from another case. I.e.,
plot JISP at N-.2, UIX(afdmc) at N-.1, IL7(afdmc) at N,
UIX(GFMC) at N+.1, IL7(GFMC) at N+.2

within each shell, all single energy differences would be
equal, as indicated by the solid reference lines in Fig. (6).
That is the gross feature of shell structure arises from the
confining potential and is evident in the plot of the single
differences as a jump in the calculated energy differences
as one goes from one shell to the next.

The detailed fluctuations within a shell are entirely due
to the neutron interactions. The most prominent feature
is the neutron pairing, in particular in the p-shell and also
in the (beginning) of the sd-shell. This effect can be seen
even better by looking at the double difference in total en-
ergy ∆(N) = −1N+1[E(N)− 1

2 (E(N − 1) + E(N + 1))],

Constrain Isovector Gradient Terms in the density functional

Cold atoms versus neutron drops

Comparison of different Hamiltonians



Improved	
  Density	
  FuncGonals
Neutron	
  Drops,	
  Masses,	
  Fission,…
DerivaFve-­‐free	
  opFmizaFon,	
  uncertainty	
  
quanFficaFon

h_p://www.deixismagazine.org/2011/03/cranking-­‐up-­‐the-­‐speed-­‐of-­‐dt/
h_p://www.deixismagazine.org/2011/03/pounding-­‐out-­‐atomic-­‐nuclei/
h_p://www.mcs.anl.gov/news/detail.php?id=720



How many protons and neutrons can be bound in a nucleus?
Skyrme-­‐DFT:	
  6,900±500syst

The limits: Skyrme-DFT Benchmark 2012

288
~3,000

Asymptotic freedom ?

Erler et al., 
Nature 486, 509 (2012)

• Systematic errors (due to incorrect assumptions/poor modeling)
• Statistical errors (optimization and numerical errors)

h_p://www.livescience.com/21214-­‐atomic-­‐nuclei-­‐variaFons-­‐esFmate.html
h_p://www.sciencedaily.com/releases/2012/06/120627142518.htm
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EquaFon	
  of	
  State	
  and	
  Neutron	
  Stars

EquaFon	
  of	
  State

Mass/Radius
Phys.	
  Rev.	
  Le_.	
  108,	
  081102	
  (2012)



Connec&ons	
  to	
  Other	
  Fields:	
  	
  Cold	
  Atoms

Vortex	
  Dynamics

Bulgac	
  et	
  al.,	
  
Science,	
  332,	
  1288	
  (2011)

ExoFc	
  pairing	
  phases

J.	
  Pei	
  et	
  al.,	
  Phys.	
  Rev.	
  A	
  82,	
  021603(R)	
  (2010)

Gezerlis	
  and	
  Carlson,	
  Phys.	
  Rev.	
  C	
  77,	
  032801(R)	
  (2008)
Carlson,	
  Gandolfi,	
  Gezerlis,	
  PTEP	
  (2012)

EquaFon	
  of	
  State

h_p://www.physicstoday.org/resource/1/phtoad/v64/i8/p19_s1
3
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FIG. 1: (Color online) The dimensionless static shear viscos-
ity η/n as a function of T/εF for an 83 lattice (red) squares
and 103 lattice solid (blue) circles. The error bars only rep-
resent the stability of the combined (SVD and MEM) inver-
sion procedure with respect to changes in the algorithm pa-
rameters. The (green) line depicts the prediction of kinetic
theory [12]. For comparison, recent results of the T -matrix
theory produced by Enss et al., are plotted as open (purple)
circles [15].

results approach the predictions of kinetic theory already
at T ! 0.3εF [12]. Note that the PIMC results are sig-
nificantly below all known results in the vicinity of Tc.

In Fig. 2, the value of the entropy obtained from PIMC
calculations is shown (extracted as in Ref. [21]), together
with the results extracted from the recent high-precision
MIT measurement [35]. For temperatures T > 0.25εF ,
both lattices reproduce experimental data reasonably
well. At low temperatures T < 0.25εF the 83-lattice
results deviate from the measurements, producing sys-
tematically lower values. On the other hand, the 103-
lattice results reproduce correctly the temperature de-
pendence of the entropy, yet slightly overestimating the
experimental values. These discrepancies are attributed
to systematic errors that are known to be present at low
temperatures even for larger lattices [24]. Consequently,
we expect the ratio η/s to be significantly affected by
uncertainties related to the entropy at low temperatures.

In Fig. 3 the ratio η/s is presented as a function of tem-
perature. The PIMC calculations reveal the existence of
a deep and rather narrow minimum in η/s at tempera-
tures around 0.20−0.25εF , which is above Tc. Again, the
ratio η/s is located around the kinetic theory predictions
already at T ! 0.3εF [12]. The estimation of the η/s-
ratio reveals (η/s)min ≈ 0.2 as the most probable value
for the minimum. This result is about 2.5 times higher
than the KSS bound η/s " 1/4π ≈ 0.08. Such a low
value has been reported only for pure gluons as a result
of lattice calculations [25, 26].
The minimum value for the ratio (η/s)min ≈ 0.2, is
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FIG. 2: (Color online) Entropy per particle as a function of
T/εF for the 83 lattice in (red) squares and 103 lattice in
(blue) circles. The entropy per particle extracted from the
recent MIT measurement [35] is plotted with (black) crosses.

significantly lower than predictions of all current cal-
culations, which yield a minimum # 0.5. However,
these methods are in principle unreliable when applied
to the UFG at T # Tc, where the minimum appears.
Moreover, the η/s ratio calculated from PIMC simula-
tions is also significantly lower than the experimental
measurements [3–5], which also give the value # 0.5.
Note, however that these measurements are performed
in trapped systems. The trap-averaged viscosity 〈η/n〉 =
1

N!

∫

η(r) d3r may affect the determination of the min-
imum value. To solve this puzzle, one should apply an
averaging procedure to the uniform case results, using,
e.g., local density approximation. It is well known that
this procedure leads to a divergence due to the viola-
tion of the hydrodynamic description at the edges of the
cloud [36]. To perform a reliable averaging procedure the
collisionless edges should be treated using kinetic theory.
This, however, is a hard task that requires the knowledge
of second-order transport coefficients like the relaxation
time, which are currently poorly known.
Since our main result for the minimal value of η/s is

significantly lower than other predictions as well as ex-
perimental results, we have performed exploratory cal-
culations to estimate the size of systematic effects. We
have checked the stability of the inversion procedure with
respect to the default model as well the impact of the
nonzero value of the effective range, see [30] for details.
Our conservative estimation indicates that the minimal
value of the η/s-ratio is lower than 0.45.
In summary, we have presented an attempt to deter-

mine the shear viscosity of the UFG through an ab ini-
tio PIMC approach. The minimum value of the η/s ra-
tio was estimated to be lower than 0.45 with the most
probable value being (η/s)min ≈ 0.2, located around
T ≈ 0.20− 0.25εF . This value is close to the KSS bound
and suggests that the unitary Fermi gas is the best can-
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FIG. 2: (color online) Total cross sections for NC-induced processes on the deuteron, obtained with the AV18 potential and
the inclusion of one-body (dashed line) and (one+two)-body (solid line) terms in the weak current. Also shown are the total
cross sections obtained by retaining only the axial piece of the weak current. See text for explanation.

TABLE VII: Total cross sections in cm2 for the NC-induced processes on the deuteron at selected initial neutrino energies,
obtained with the AV18 or CDB potentials and the inclusion of one-body terms (1) only and both one- and two-body terms
(1+2) in the weak current.

νl-NC νl-NC

� (MeV) AV18(1) CDB(1) AV18(1+2) CDB(1+2) AV18(1) CDB(1) AV18(1+2) CDB(1+2)
50 5.747(–41) 5.791(–40) 5.892(–41) 5.847(–40) 4.449(–41) 4.484(–40) 4.546(–41) 4.519(–40)
100 2.577(–40) 2.597(–40) 2.657(–40) 2.638(–40) 1.604(–40) 1.617(–40) 1.640(–40) 1.633(–40)
500 2.703(–39) 2.715(–39) 2.874(–39) 2.858(–39) 9.503(–40) 9.553(–40) 9.916(–40) 9.895(–40)
1000 3.425(–39) 3.442(–39) 3.663(–39) 3.659(–39) 1.490(–39) 1.496(–39) 1.572(–39) 1.572(–39)

to the forward hemisphere, the quasi-elastic peak moves to the right, i.e. towards higher and higher energies. Indeed,
at forward angles it merges with the threshold peak due to the quasi-bound 1S0 state. This latter peak is very
pronounced at low �, but becomes more and more suppressed by the form factor ∼ �1S0 |j0(q r/2) |d� as � increases.

Finally, it is interesting to compare the results above with those obtained in a naive model, in which the deuteron
is taken to consist of a free proton and neutron initially at rest. The lab-frame cross sections of the NC-induced
processes on the nucleon, and of the CC-induced processes n(νe, e−)p and p(νe, e+)n in the limit in which the final
electron/positron mass and proton-neutron mass difference are neglected, read [44]:

�
dσ

d��dΩ

�NC/CC

ν/ν

=
G2 m2

8π2

�
��

�

�2

δ(�� − ��qe)

�
ANC/CC ∓ s− u

m2
BNC/CC +

(s− u)2

m4
CNC/CC

�
, (5.2)

where G=GF or GF cos θC for NC or CC, the − (+) sign in the second term is relative to the ν (ν) initiated reactions,
��qe has been defined in Eq. (5.1), and s − u = 4m � − Q2 with Q2 = 4 � �� sin2 θ/2. The structure functions A(Q2),
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Figure 2: (Color online) The spin response function Sσ(q = 0,ω) of neutron matter at saturation density obtained by fitting

to AFDMC sum-rules using two different ansatz are shown as the black solid and dashed curves. The inset compares the fits

and the two-particle response at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8

fm (green). The linear, low-frequency forms predicted in Ref. [22], labeled as OPE and χPT are shown for comparison. The

dot-dot-dashed curve is obtained using the two-body approach in Eq. (4.6) with OPE.

the structure function obtained in Ref. [22] are shown for the two choices of C̃σ corresponding to the OPE and χPT
potentials discussed earlier. The form of the low-frequency response in Eq. (4.1) is valid only at ω � EF . In the

figure we also show the results from the two-body approach (described in Eq. (4.6)) in the Born approximation with

OPE. At low frequency ω ≤ EF /2, it gives similar results to the quasi-particle picture, then becomes larger at higher

frequency since it includes the exact phase space integrals. The inset compares the fits and the two-particle response

at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8 fm (green). The

asymptotic forms and sum-rules force significantly more strength at lower energy than obtained previously.

The simple phenomenological fit (dashed line - Eq. (5.2) and the fit to the quasi-particle form (solid line - Eqs.

(4.5) and (5.1)) produce very similar response functions. In addition to the sum-rule constraints, we are forcing the

response to go to zero at low frequency, have a single peak structure, and to fall off fairly rapidly at high-energy as

obtained from the two-neutron response. Combined, these considerations place fairly tight constraints on the spin

response of neutron matter.

In Figure 3 we compare the response functions obtained over a range of densities n = 0.12, 0.16 and 0.20 fm−3. As

expected from the sum-rules, the peak of the response functions shifts to larger energy with increasing density. The

tensor and spin-orbit correlations are naturally of shorter range at the higher densities where the mean inter-particle

spacing is shorter, and hence the peak shifts to higher energy. The total strength in the response is fairly flat over

the regime of densities we consider as obtained in the sum-rule calculations for S0.

Finally, at higher density the distribution is somewhat broader as ω1 increases more rapidly with density than

ω0. Both ω0 and ω1 increase rapidly, presumably associated with the increasing importance of the shorter-range
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Conclusions:
Important	
  progress	
  in	
  computaFonal	
  nuclear	
  physics	
  and	
  our
understanding	
  of	
  nuclear	
  reacFons.

Nuclear	
  Structure	
  is	
  a	
  fascinaFng	
  subject	
  with	
  deep	
  connecFons	
  to:

Many-­‐Body	
  Theory:	
  Condensed	
  Ma_er/	
  Cold	
  Atoms

Astrophysics:	
  	
  r-­‐process,	
  neutron	
  stars,	
  supernovae

Neutrino	
  physics	
  and	
  fundamental	
  symmetries:	
  
	
  	
  	
  	
  	
  double-­‐beta	
  decay,	
  neutrino	
  oscillaFons,	
  ...


